Title

Disruption of brain conductivity and permittivity and neurotransmitters induced by citrate-coated silver nanoparticles in male rats

Document Type

Article

Abstract

As one of the most exonerative, competitive, and abundant nanoparticles in curative uses, silver nanoparticles (AgNPs) play a growing important role in developing global neurodegeneration. Herein, we inspected the neurotoxic and histopathological effects of the oral dose of 26.9 nm citrate-coated AgNPs (100 and 1000 mg/kgbw, 28 days) on the brain conductivity and permittivity combined with neurotransmitter assays. While male mice in the control group were given deionized water. In terms of biophysical levels, the brain electric conductivity and relative permittivity were significantly decreased in the 26.9 nm citrate-coated AgNP treated groups versus the controls. Besides, 26.9 nm citrate-coated AgNP treatment resulted in a significant deficiency in the concentrations of brain acetylcholine esterase, dopamine, and serotonin. Total brain contents of silver ion significantly increased in a dose-dependent manner. Further, light and electron microscopy revealed a progressive disruption in the lamellar pattern of the myelinated axons of the nerve fibers, in addition to the accumulation of nanosilver in lysosomes and swollen mitochondria in axoplasm. In conclusion, 26.9 nm citrate-coated AgNPs are capable of gaining access to the brain of mice and causing electric conductivity and relative permittivity damage along with a high degree of cellular toxicity in the brain tissue. Therefore, the present study highlights, for the first time, the adverse effects of the citrate-coated AgNPs to the brain of mice and raises the concern of their probable neurotoxic impacts which is helpful for conclusive interpretation of future behavioral and potential neurodegeneration-based aspects. It would be of interest to investigate citrate-coated AgNPs mediated axonal relevant-signal transduction levels in future studies.

Publication Date

7-1-2021

Faculty

Faculty of Applied Health Sciences Technology

Subject Area

Physical Sciences, General Environmental Science

Indexed in Scopus

yes

Indexed in Web Of Science

yes

DOI

https://doi.org/10.1007/s11356-021-13397-5

Volume

28

Keywords

Conductivity, Nanosilver, Neurotoxicity, Neurotransmitters, Oxidative stress, Permittivity

ISSN

09441344

eISSN

16147499

Share

COinS