Title
Vertical bone augmentation induced by ultrathin hydroxyapatite sputtered coated mini titanium implants in a rabbit calvaria model
Document Type
Article
Abstract
Background The purpose of this study was to evaluate the vertical new bone formation induced by sputtered HA-coated titanium implants (HA-coated) compared with sandblasted acid-etched titanium implants (noncoated) in a rabbit calvarial model. Materials and method Twenty HA-coated and 20 noncoated titanium implants were divided equally into four groups as HA-coated implant (HA); noncoated implant (NC); HA-coated implant with membrane (HA/M); noncoated implant with membrane (NC/M). All implants were placed 5 mm above the original bone (OB). Collagen membranes were placed over the implants in HA/M and NC/M groups. The animals were sacrificed at 4 weeks (n = 5) and 8 weeks (n = 5). Vertical bone height above OB (VBH, mm) and augmented bone area (ABA, mm2) were analyzed histologically and radiographically. Results At 4 weeks, VBH reached significantly higher level in HA/M group compared with other three groups (p < 0.05). At 8 weeks, significant difference was detected between HA/M and NC groups (p < 0.05). At 4 and 8 weeks, ABA in HA/M group was significantly larger compared with other three groups (p < 0.05). Conclusion The present results indicated that sputtered HA-coated titanium implant together with collagen membrane could be a novel and effective approach for vertical bone augmentation.
Publication Date
11-1-2015
Faculty
Faculty of Dentistry
Subject Area
Physical Sciences, General Materials Science, General Engineering
Indexed in Scopus
yes
Indexed in Web Of Science
yes
DOI
https://doi.org/10.1002/jbm.b.33347
Volume
103
Keywords
collagen membrane, dental implants, hydroxyapatite coating, sputtered coating, Vertical bone augmentation
ISSN
15524973
eISSN
15524981
Recommended Citation
Wang, Xin; Zakaria, Osama; Madi, Marwa; Hao, Jia; Chou, Joshua; and Kasugai, Shohei, "Vertical bone augmentation induced by ultrathin hydroxyapatite sputtered coated mini titanium implants in a rabbit calvaria model" (2015). Faculty of Dentistry. 77.
https://pks.pua.edu.eg/dentistry_publications/77